Small area estimation with spatial similarity
نویسنده
چکیده
We derive a class of composite estimators of small-area quantities that exploit spatial (distance-related) similarity. They are based on a distribution-free model for the areas, but the estimators are aimed to have optimal design-based properties. Composition is applied also to estimating some of the global parameters on which the small-area estimators depend. We show that the commonly adopted assumption of random effects is not necessary for exploiting the similarity of the districts (borrowing strength across the districts). The methods are applied to estimation of the mean household sizes and the proportions of single-member households in the counties (comarcas) of Catalonia. Key phrases: Auxiliary information, composite estimation, design-based estimator, exploiting similarity, model-based estimator, multivariate shrinkage, small-area estimation, spatial similarity. JEL Classification: C1 (Econometric and Statistical Methods): C13 — Estimation; C14 — Semiparametric and nonparametric methods; C15 — Simulation methods. C4 (Special Topics): C42 — Survey methods. Address for correspondence: N. T. Longford, Departament d’Economia i Empresa, Universitat Pompeu Fabra, Ramon Trias Fargas 25–27, 08005 Barcelona, Spain. Email: [email protected] .
منابع مشابه
THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملSome New Developments in Small Area Estimation
Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...
متن کاملAn Application of Linear Model in Small Area Estimationof Orange production in Fars province
Methods for small area estimation have been received great attention in recent years due to growing demand for reliable small area estimation that are needed in development planings, allocation of government funds and marking business decisions. The key question in small area estimation is how to obtain reliable estimations when sample size is small. When only a few observations(or even no o...
متن کاملSpatial Models in Small Area Estimation in the Context of Official Statistics
Small area estimation (SAE) plays an important role in survey sampling due to growing demands for reliable small area statistics from both public and private sectors. This paper reviews some of the current techniques of small area estimation combined with spatial models available in the literature. Illustrative examples or applications are likewise presented in the context of official statistic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2010